Statistical mechanics of fluid turbulence based on the cross-independence closure hypothesis

Duration: 29 mins 34 secs
Share this media item:
Embed this media item:


About this item
Statistical mechanics of fluid turbulence based on the cross-independence closure hypothesis's image
Description: Tatsumi, T (Kyoto)
Wednesday 01 October 2008, 16:30-17:00
 
Created: 2008-10-22 15:31
Collection: The Nature of High Reynolds Number Turbulence
Publisher: Isaac Newton Institute
Copyright: Tatsumi, T
Language: eng (English)
Distribution: World     (downloadable)
Credits:
Author:  Tatsumi, T
Explicit content: No
Aspect Ratio: 4:3
Screencast: No
Bumper: /sms-ingest/static/new-4x3-bumper.dv
Trailer: /sms-ingest/static/new-4x3-trailer.dv
 
Abstract: Statistical theory of turbulence is presented, which deals with homogeneous isotropic turbulence and inhomogeneous turbulent flows, their large-scale structures and small-scale similarities on an equal footing, using the "cross-independence closure hypothesis" proposed by Tatsumi(2001) for closing the Lundgren-Monin equations(1967) for the multi-point velocity distributions. Homogeneous isotropic turbulence at large Reynolds numbers is shown to be governed by the closed set of the one- and two-point velocity distributions. The distributions are expressed as the universal inertial-normal distributions associated with their own energy-dissipation rates as only parameters. Only exception from this universality is the longitudinal velocity-difference distribution, which is given by the local non-normal distributions in the inertial and viscous subranges. These theoretical results are discussed in comparison with the existing experimental and numerical results. Inhomogeneous turbulent flows at large Reynolds numbers are shown to be governed by the closed set of equations for the mean velocity and the one- and two-point velocity distributions. These equations have eminent feature that the effect of the mean flow is limited to the lage-scale components of turbulence. This feature is expected to largely simplify the formalism of shear-flow turbulence just like the 'boundary layer' in laminar flows.

A seminar from the Inertial-Range Dynamics and Mixing conference in association with the Newton Institute programme: The Nature of High Reynolds Number Turbulence www.newton.ac.uk/programmes/HRT/seminars/
Available Formats
Format Quality Bitrate Size
MPEG-4 Video 480x360    1.83 Mbits/sec 407.02 MB View Download
WebM 450x360    609.46 kbits/sec 131.31 MB View Download
Flash Video 480x360    801.62 kbits/sec 174.18 MB View Download
iPod Video 480x360    502.8 kbits/sec 109.25 MB View Download
QuickTime 384x288    843.73 kbits/sec 183.33 MB View Download
MP3 44100 Hz 125.02 kbits/sec 26.80 MB Listen Download
Windows Media Video 475.01 kbits/sec 103.21 MB View Download
Auto * (Allows browser to choose a format it supports)