Plenary Lecture 12: The causes and consequences of metabolic specialization

Duration: 32 mins 50 secs
Share this media item:
Embed this media item:


About this item
Image inherited from collection
Description: Johnson, D (ETH Zürich)
Friday 31 October 2014, 11:55-12:30
 
Created: 2014-11-05 11:17
Collection: Understanding Microbial Communities; Function, Structure and Dynamics
Publisher: Isaac Newton Institute
Copyright: Johnson, D
Language: eng (English)
Distribution: World     (downloadable)
Explicit content: No
Aspect Ratio: 16:9
Screencast: No
Bumper: UCS Default
Trailer: UCS Default
 
Abstract: Co-authors: Elin E Lilja (ETH Zürich and Eawag), Felix Goldschmidt (ETH Zürich and Eawag), Martin Ackermann (ETH Zürich and Eawag)

Consider a microbial cell residing within a lake, soil, or the human gut. This cell encounters a myriad of different substrates that could theoretically satisfy its growth requirements. Yet, even if this cell were near starvation, it would only consume a subset of the available substrates. Why is this? What is the advantage of consuming only a subset of the available substrates rather than all of them? We hypothesize that particular metabolic processes are in biochemical conflict with each other, thus causing those processes to be more effectively performed by different strains than by the same strain. A biochemical conflict could occur, for example, if different metabolic processes compete for the same pool of limiting intracellular resources or if different metabolic processes produce products that inhibit other metabolic processes. In this talk, I first present a general theoretical model that uses information about biochemical conflicts to predict whether any two metaboli c processes will be retained by a single metabolic generalist strain or will segregate into different metabolic specialist strains over evolutionary time. I next present empirical evidence of specific environmental conditions when consortia of metabolically specialized strains consume substrates more rapidly than a single metabolic generalist strain. Our findings are potentially relevant for any pair of metabolic processes and could therefore be useful for predicting how best to distribute different metabolic processes among different cells in order to maximize the conversion of a substrate into a desired product.
Available Formats
Format Quality Bitrate Size
MPEG-4 Video 640x360    1.94 Mbits/sec 478.04 MB View Download
WebM 640x360    572.56 kbits/sec 137.76 MB View Download
iPod Video 480x270    522.39 kbits/sec 125.63 MB View Download
MP3 44100 Hz 249.78 kbits/sec 60.13 MB Listen Download
Auto * (Allows browser to choose a format it supports)